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Collective phase slips and phase synchronizations in coupled oscillator systems
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Phase synchronization dynamics in coupled limit cycles with distributed natural frequencies are explored. A
synchronization tree from free oscillations to local clustering and global phase locking is found. A
desynchronization-induced transition to chaos is shown. Near the onset of various phase synchronization
points, a simultaneous quantized stick-slip feature of the phases of oscillators is observed on the desynchro-
nization side and heuristically interpreted in terms of a heteroclinic path instability.

PACS number~s!: 05.45.Xt, 87.10.1e, 02.50.2r
r o
y
m
b
r
f

re

e
gl

al
s-

lim
t
e

um
id
e

ha
ha
th
a
h.
in
ch
it

d
co
l-

ely.

be-
m-
the
r a
-
to

se
is

dif-

bit
in-
it
the

to
the
In

hro-
he
in-
ua-
ity
re
I. INTRODUCTION

The dynamics of systems consisting of a large numbe
mutually interacting units is an intriguing problem in man
fields, ranging from physics to chemistry, ecology, econo
ics, and biology. A significant phenomenon among these
haviors is that a large population of interacting oscillato
can spontaneously synchronize themselves to a common
quency, even if some quenched distribution of natural f
quencies across the population exists@1,2#. This self-
synchronization behavior can be found in laser arrays@3#,
Josephson-junction arrays@4#, magnetic resonance process
~the coherent motion of magnetized domains in stron
coupled magnetic systems! @5#, charged wave instabilities in
plasma@6#, and a large variety of chemical and biologic
systems@7–16#. A promising strategy in studying these sy
tems is to adopt phase models@1,2#. A number of investiga-
tions have been made in the past few years on coupled
cycle systems, where each system has periodic motion in
absence of coupling. Recently, the exploration has been
tended to coupled chaotic systems. Under some circ
stances one can define an appropriate phase of the indiv
chaotic oscillator@17#, and the phase synchronization ph
nomenon has been found@18–20#.

Although the mutual entrainment of coupled systems
been extensively explored, many intrinsic dynamical mec
nisms are still unknown. For example, it is not clear how
various oscillators are led to complete synchronization vi
sequence of transitions on increasing the coupling strengt
is important to elucidate this issue from a microscopic po
of view. Recently, we studied this problem and found ri
behaviors of synchronized bifurcations in coupled lim
cycles @21#. In this paper we go further in exploring an
understanding the essential features of the system. We
sider the following set ofN nonlinearly coupled phase osci
lators with random natural frequenciesv i taken from a nor-
mal Gaussian distributiong(v) and with nearest coupling
@1,2#:

u̇ i5v i1
K

3
@sin~u i 112u i !1sin~u i 212u i !#. ~1!

Here, i 51,2, . . . ,N, whereK, u i , and u̇ i are the coupling
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strength, instantaneous phase, and velocity, respectiv
u i 1N(t)5u i(t). Without losing generality we scalev i such
that

(
i 51

N

v i50. ~2!

When one increases the couplingK, system~1! exhibits com-
plicated synchronized dynamics due to the competition
tween the disorder originating from the quenched rando
ness of the natural frequencies of various oscillators and
order induced by the interaction among elements. Fo
given N and $v i ,i 51,2, . . . ,N%, there exists a critical cou
pling Kc whenK.Kc all oscillators can be phase locked
each other, one has$u̇ i50% for i 51, . . . ,N, and eachu i is
locked to a fixed value. When the coupling strengthK is
lower than Kc , the oscillators cannot attain global pha
locking, and thenu̇ i(t) is nonzero and time dependent. It
found that if we define the average frequency of thei th os-
cillator as

v̄ i5 lim
T→`

1

TE0

T

u̇ i~ t !dt, ~3!

we may still observe a certain synchronization between
ferent oscillators in thetime-averagedsense, i.e.,v̄ i 5 v̄ j
( iÞ j ) for the caseK,Kc , when the strict phase locking
u̇ i(t)50 is broken. In this regime, the system may exhi
complicated phase synchronization behaviors. It is an
triguing topic to investigate how these nonidentical lim
cycles are led to complete synchronization on increasing
mutual couplingK from K50.

The paper is arranged as follows. Section II is devoted
a general description of the synchronization process and
critical behavior near the onset of global phase locking.
Sec. III, we reveal a cascade of transitions for phase sync
nization between oscillators or clusters of oscillators. T
phase dynamics in the vicinities of these transitions are
vestigated. Bifurcation cascades from high-dimensional q
siperiodicity to chaos to low-dimensional quasiperiodic
and periodicity are explored in Sec. IV, whe
402 ©2000 The American Physical Society
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PRE 62 403COLLECTIVE PHASE SLIPS AND PHASE . . .
desynchronization-induced transitions to chaos are em
sized. We summarize our results in Sec. V.

II. SIMULTANEOUS PHASE SLIPS NEAR THE ONSET
OF SYNCHRONIZATION

For N coupled oscillators, there exists a critical coupli
strengthKc . If K is larger thanKc , all oscillators in the
system are synchronized. It is interesting to study the
namical behavior near the onset of global synchroniza
for K slightly smaller thanKc from a microscopic point of
view.

It is natural to study the temporal behaviors of the rotat
frequencies$u̇ i(t)% of the limit cycles. In Figs. 1~a! and 1~b!,
we present the evolutions ofu̇ i(t) for N55 and different
coupling strengths. ForK50, u̇ i(t) must be equal to the
constant natural frequencyv i . For weak interactions amon
oscillators,u̇ i(t) varies in an oscillatory way around its nat
ral frequency@Fig. 1~a!#. As K increases, the oscillation am
plitude of u̇ i(t) becomes large, and at the same time
average frequenciesv̄ i shift closer to each other from the
individual natural frequenciesv i . In Fig. 1~b!, we plot the
evolution of u̇ i(t) near the onset of synchronization, whe
we find simultaneous on-off oscillations, i.e., all oscillato
stay in the phase-locking condition~off state! for a long time,
and then simultaneous bursts~firings! of all oscillators~on
state! break the locking state. After a short pulselike firin
all oscillators return simultaneously to the phase-lock
state, and this process is repeated periodically. AsK gets
closer toKc , the durationt between two successive firing
from the phase-locking state becomes longer, until atK
5Kc , t→`. In Figs. 1~c! and 1~d!, the evolution of the
phases of individual oscillators near the onset of global ph
locking is plotted forN55 and 15, and we find very char
acteristic quantized phase slips, i.e., the phase evolut
have a staircaselike shape. Oscillators stay at certain p
values for a long time and then simultaneously jump to n
steps. The amplitudes of jumps for different elements may
different, e.g., in Fig. 1~c! for N55, Du52p/5 for i
51,2,4,5 andDu528p/5 for i 53, and in Fig. 1~d! for N
515, Du54p/15 for i 55,7,9 andDu5216p/15 for i

FIG. 1. ~a!,~b!: The time evolutions ofu̇ i(t) plotted for N55
and two different coupling strengthsK50.1 and 5.07. Near the
onset of the instability of the phase-locking state~b!, simultaneous
firings of all oscillators are clearly shown.~c!,~d! The evolution of
u i(t) plotted near the critical pointK5Kc , whereK55.07, N55
in ~c! and K56.212, N515 in ~d!. Quantization of simultaneou
phase slips for all oscillators is shown.
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51,3. Moreover, a plot of durationt againstKc2K shows a
clear scaling relation

t}~Kc2K !21/2, ~4!

as shown in Fig. 2~a! for N53, 4, and 5.
These features~synchronized firings of motion and quan

tized slips of phase in each firing! can be understood by a
intuitive interpretation. Suppose that various oscillators c
be locked to a set of phasesū i(K) for K.Kc . Since the
forces on the right-hand side of Eqs.~1! have 2p periodicity
with respect to all the phase anglesu i , i 51,2, . . . ,N, it is
clear that all sets satisfying the relations

Dū i 11~K,m!5 ū i 11~K,m!2 ū i~K,m!

5 ū i 11~K !2 ū i~K !12pmi

5Dū i~K !12pmi ~5!

must also be phase-locking solutions of Eq.~1!. Wherem
5(m1 , . . . ,mj , . . . ,mN) andmi is any integer. The phase
locking solutions may lose their stability via a saddle-no
bifurcation whenK is decreased to less thanKc . At the
critical point K5Kc , there exists a heteroclinic path linkin
some of these phase-locking solutions, which has the low
potential, and is attractive. For the particular caseN52, the
existence of such a heteroclinic path can be rigorou
proved @22#. Near the onset of desynchronization, i.e.,K
,Kc , and uK2Kcu!1, the saddle-node instability leads
motion along this heteroclinic path. That is, the system ta
such a periodic path, which stays in the vicinity of one of t
above stationary solutions for a long time~‘‘off’’ state !, es-
capes from this solution, and then quickly approaches
vicinity of the next stationary solution along the heteroclin
path K5Kc ~‘‘on’’ state, firing!. Due to the interaction of
units, all oscillators experience simultaneous phase slips

FIG. 2. ~a! The log-log plot of the timet between two phase slip
firings and the couplingKc2K for N53, 4, and 5, and a scaling
exponent of21/2. ~b! The absolute winding number for oscillator
plotted againstKc2K for N55; the absolute winding number o
i 53 is four times larger than that ofi 51,2,4,5 because of the
relation Eq.~12!. ~c! The quantityV varying againstKc2K for
N55. For both~b! and~c!, the scaling exponent is 1/2, indicating
typical saddle-node bifurcation from the phase-locking state.
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404 PRE 62ZHIGANG ZHENG, BAMBI HU, AND GANG HU
say, synchronized firings. This mechanism leads to the
multaneous periodic pulses of Fig. 1~b!. For the saddle-node
bifurcation, we have a universal form@23#:

ẋ5~Kc2K !1x2. ~6!

The timet for x to move fromx50 to x→` reads

t}E
0

` dx

~Kc2K !1x2
5

p

2AKc2K
. ~7!

This explains the scaling relation~4!. For this saddle-node
bifurcation, we expect thatv̄ i and V5( i 51

N uv̄ i u obey the

typical scaling behavior:uv̄ i u}(Kc2K)1/2, V}(Kc2K)1/2.
In Figs. 2~b! and 2~c!, we give numerical results for th
scaling in the critical regime forN55, which are in good
agreement with the above prediction.

Based on the above discussions, it is interesting to c
pute the phase slips of various oscillators during each ph
slip pulse. LetDu i denote the phase shift ofu i during each
firing. From Eqs.~2! and ~3!, we have

(
i 51

N

Du i50, ~8!

i.e., due to the absence of motion of the center of mass,
total shifts of various oscillators are zero. Thus, if there
limit cycles rotating in the clockwise direction, there mu
also exist elements rotating counterclockwise for balan
We further argue that any two adjacent fixed points alon
heteroclinic path atK5Kc take mi50 or 61 in Eqs. ~5!,
i.e.,

Du i 112Du i50 or 62p ~9!

for i 51,2, . . . ,N21. Combining both the condition~8! and
the hierarchy~9!, one finds thatDu i takes only the following
quantized values:

Du i50,6
2p

N
,6

4p

N
, . . . ,

2~N21!p

N
,2p. ~10!

In realistic systems, the value for eachDu i depends on the
choice of the distribution of$v i%. Returning to Figs. 1~c! and
1~d!, we find that the labeled phase shifts are complet
consistent with Eq.~10!. In fact, the shifts can be exactl
worked out after we clarify the behavior of phase synch
nization in the next section.

III. TRANSITION-TREE CASCADE
OF PHASE SYNCHRONIZATIONS

From the microscopic point of view, it is significant t
study how the competition between disorder and interacti
leads to global entrainment of various oscillators. As we
duce K to values considerably smaller thanKc , no more
phase locking exists, and no apparent synchronization ca
observed directly foru̇ i(t). However, some other implici
synchronization—phase synchronization, which dema
@24#
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umu i~ t !2nu j~ t !u,const ~11!

—can still be observed, wherem,n are two integers repre
senting them:n phase locking. Obviously this phase lockin
is valid in an average sense. A typical case is 1:1 ph
locking, which is equivalent to the conditionv̄ i5v̄ j . In or-
der to clearly show the hierarchy of phase locking amo
oscillators and the competition between the natural f
quency distribution and the coupling intensity, we plot t
v̄ i-K curves to show the characteristics of various synch
nizations. In Figs. 3~a! and 3~b!, we plotv̄ i defined in Eq.~3!
againstK for N55 and 15, respectively, by varyingK from
K50 to K.Kc . In both figures, we find transition trees o
phase synchronizations.

A systematic investigation of Figs. 3 shows that thr
kinds of transitions can be observed in the trees. First, if t
lattice-adjacent oscillators~e.g., 1 and 2 are lattice adjacen
while 1 and 3 are not ifN>4) or adjacent clusters of oscil
lators~here acluster is defined as a group of oscillators wit
an identical average frequency! have close frequencies, the
can easily be synchronized by increasing the couplingK. In
this case, one always finds two branches merging to a si
one~indicated by A!. This kind of transition can be observe
frequently along the bifurcation tree. Second, if two nona
jacent oscillators have close frequencies while the oscilla
between them have considerably different frequencies,
nonadjacent oscillators can also become phase synchron
to each other, i.e., nonlocal clusters can be formed, and th
nonlocal clusters can quickly bring the oscillators betwe

FIG. 3. Transition trees of synchronization for averaged wind
numbers of various oscillators vs the couplingK. ~a! N55; ~b! N
515. Different orders of clustering can be observed with the
crease ofK. Note the existence of three kinds of transitions labe
A, B, and C. The curves are based on numerical simulations foK
stepDK50.01. This is the same for Figs. 6 and 7.
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PRE 62 405COLLECTIVE PHASE SLIPS AND PHASE . . .
them to the synchronized state and form a larger sync
nized cluster. This kind of transition occurs frequently f
systems with a large number of nonidentical elements, wh
are labeled B in Fig. 3~b!. In Fig. 4~a!, we give an enlarged
plot of an example of type B bifurcation for the caseN
515. Although oscillators 5 and 8 are nonadjacent, they
come phase synchronized at aboutK50.99. This nonlocal
synchronization quickly brings the adjacent oscillator to
synchronized state, e.g., atK51.11, this nonlocal cluste
synchronizes with the sixth and seventh oscillators. In F
4~b!, we show the time evolution of the phase differen
u8(t)2u5(t) slightly before and after phase synchronizatio
Before the nonlocal locking occurs, one observes irregu
phase slips of the phase difference. When phase synch
zation takes place, the phase difference becomes local
i.e., it oscillates around some value, and no phase slips
tween these two oscillators are found. This proves the e
tence of nonlocal phase synchronization. An oscillator tha
synchronized to a cluster for a certainK may become desyn
chronized from the original cluster on increasingK. It is
clear that this kind of transition is an inverse process of s
chronization. This desynchronization always happens at
edge oscillator of a cluster, due to the competition betw
two neighboring clusters@labeled C, e.g., see the second a
third oscillators of Fig. 3~b!#. Transitions of type A are nor
mal, but B and C are different types of transitions.

Based on the bifurcation tree presented in Fig. 3, we
able to exactly explain the phase shifts in Figs. 1~c! and 1~d!.
For the case ofN55, whenK,Kc anduK2Kcu!1, one has
two clusters 3 and 1, 2, 4, 5. Thus, from the relation~9!, we
have

(
1,2,4,5

Du i52Du354Du i , ~12!

wherei 51,2,4,5. Because oscillators 2 and 3 belong to d
ferent clusters, andv̄2.0, v̄3,0, one has from the condi
tion ~9!

FIG. 4. ~a! An enlarged plot of the nonlocal phase synchroniz
tion for N515. ~b! The time evolution of the phase differenc
u8(t)2u5(t) before and after nonlocal phase synchronization.
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Du22Du352p.

By solving the above equations, it is easy to obtainDu3
528p/5 andDu i52p/5, i 51, 2, 4, and 5. ForN515, we
have two clusters nearKc , i.e., the clockwise cluster~4–11!
and the anticlockwise cluster~1–3,12–15!. Thus from Eq.
~8! we get

(
4211

Du i58Du i52 (
123,12215

Du j527Du j , ~13!

where i 54 –11 and j 51 –3,12–15. SimilarlyDu32Du4
522p. These equations thus lead toDu i514p/15 for i
54 –11 andDu j5216p/15 for j 51 –3 and 12–15. This
analysis indicates that the phase shifts of oscillators re
closely to the final clusters. For a general case, assuming
there areN1 (N2N1) clockwise~anticlockwise! oscillators,
a similar treatment to the above argument leads to

Du i5
2p~N2N1!

N
~14!

for the clockwise cluster and

Du j52
2pN1

N
~15!

for the anticlockwise cluster.
An interesting fact is that the stick-slip feature and t

related quantized phase shifts in firing pulses can be
served at other high-order transitions in the cascade tre
Fig. 3. For instance, in Fig. 5~a!, we plot the phase dynamic
for K54.534 andN515, where one large synchronized clu
ter ~4–11! desynchronizes to two clusters~4–8! and~9–11!.
A stick-slip feature with simultaneous firing is found, and t
phase shifts during each firing are shown in Fig. 4~b!, which
can be analytically computed by using the technique of E

- FIG. 5. ~a!: Synchronized firing ofu̇ i(t)2Vs at K54.534 for
N515, where a cluster~4–11! desynchronizes to~4–8! and~9–11!.
HereVs50.182 is the winding number at the transition point.~b!
The evolution of the corresponding phase shift ofu i(t)2Vst.
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~12!–~15!. Similar behavior is confirmed at other transition
like K55.02, 2.6, 1.06, and 0.66 in Fig. 3~b!.

IV. BIFURCATION FROM QUASIPERIODICITY
TO CHAOS AND PERIODICITY

In previous sections, we concentrated on the average
havior of the coupled oscillators. From an average poin
view, the route from desynchronization to global phase lo
ing is a transition tree of different orders of synchronizatio
as shown in Figs. 3. As some average winding numbers
come locked, i.e.,v̄ i5v̄ j , the dimensionality of the couple
system decreases. However, due to the couplings amon
cillators, the actual dynamics without averaging can be v
complicated, i.e., the motion in the synchronization trees
Fig. 3 may be very different. It can be periodic, quasiperio
and even chaotic. the dynamic features along these sync
nization trees. In Fig. 6, we consider the case ofN515 and
plot the largest Lyapunov exponentlmax of the system
against the coupling strengthK. We find that, in a large
interval of K, the maximum Lyapunov exponent is positiv
indicating chaos. Therefore, in this region phase synchr
zations of chaotic oscillators are identified. Recently,
phase synchronization of coupled chaotic systems has
tracted great attention, and clustering, synchronization,
other collective behaviors have been explored. An esse
difference between the previous chaos synchronization
ours is that in the latter case individual oscillators are p
odic in the absence of coupling, and chaos is induced
nonlinear interactions of periodic oscillators, while in th
former case the individual units are intrinsically chao
without coupling.

It is interesting to see how chaos is generated in th
systems. In Figs. 7, we give the correspondence between
bifurcation tree of phase synchronizations and the maxim
Lyapunov exponent at some characteristic intervals. I
clearly shown that chaos occurs before a new phase sync
nization is attained or a desynchronization happens. For
ample, forK52.415–2.4, a large cluster desynchronizes
smaller ones, the motion of the system becomes irregu
and one then observes a positive Lyapunov exponent.
K52.5–2.61, the cluster of sites~1,2,12–15!, of which the
motion is quasiperiodic with the largest Lyapunov expon
being zero, bifurcates to two clusters~2,13,14! and~1,12,15!,

FIG. 6. The maximum Lyapunov exponentlmax plotted against
the couplingK for N515. In a large regime,lmax.0, indicating
chaos.
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and we then find positivelmax after desynchronization. A
similar phenomenon can be observed forK54.49–4.54,
when the edge oscillator 3 desynchronizes from the~3–8!
cluster. Therefore, we call this transition desynchronizati
induced chaos. This transition is reasonable because in
Figs. 7~a! and 7~c! the third irreducible frequency appea
from the two-frequency quasiperiodicity due to the desy
chronization effect, which induces the transition from qua
periodicity to chaos~zero Lyapunov exponents to positiv
ones! in Figs. 7~b! and 7~d!, respectively.

In Figs. 8~a! to 8~e!, we plot the maps ofu̇1(n) to u̇1(n

FIG. 7. Enlarged plot of the transition tree of average frequ
cies and the corresponding behavior oflmax for N515. Positive
lmax are observed when clustering or declustering occurs.

FIG. 8. Maps ofu̇1(n) to u̇1(n11) for K56.0, 3.0, 1.5, 0.9,
and 0.01 from ~a! to ~e!, respectively. ForK56.0,Kc56.22,
period-8 motion is identified in~a!. In ~b! and~d!, chaotic motions
take place.~c! and ~e! correspond to quasiperiodic tori, the dime
sion in ~e! being much higher than in~c! @in ~c!, the torus is two
dimensional#.



he

it
t

5
g

e
t
ity
be
r

es

a
nt
on

ic

n-
in

-
a
a
o-
h
r

ro
r

si
di

the
tors
to

on-
se.

dy-
u-
ree
g,

for
ity

ion.
ns

n-
but
fre-
lso

The
eti-
cies
the
ural
syn-
nd
cil-
illa-
lla-
ing
av-
lips

ar-
s
sys-
ndi-

ant
y
l
jor
oc-

PRE 62 407COLLECTIVE PHASE SLIPS AND PHASE . . .
11), whereu̇1(n) is the value ofu̇1(t) at the timet when
u1(t) crosses the angle 2np with n being an integer. When
K.Kc , we obviously have a fixed point solution, and t
map is fixed atu̇1(n)5 u̇1(n11)50. ForK slightly smaller
thanKc , we have a periodic solution represented by a fin
number of dots in Fig. 8~a!. In 8~a!, there are a total of eigh
dots, indicating a period-8 motion. From Fig. 3~b!, we iden-
tify this as a two-cluster state, where the clusters are~4–11!
and~1–3,12–15!. From Fig. 1~d!, this period-8 behavior can
easily be understood. The period of the total system is 1t,
wheret is the time between two adjacent firings. The chan
of u1 in 15t is 16p, because in eacht the slip amplitude of
u1 is 216p/15, as seen from Fig. 1~d!. Therefore one gets
period-8 motion in Fig. 8~a!. If one chooses the Poincar´
map for the other cluster~4–11!, it can easily be proved tha
the motion should be of period-7. Moreover, the periodic
of the motion of an oscillator depends on the cluster it
longs to. Generally, if there areN1 oscillators in one cluste
~denoted byC1) andN2N1 in another (C2), the motion of
the oscillator inC1 is period (N2N1), and the motion of
oscillators inC2 is periodN1. A two-frequency torus can be
identified in the three-cluster regime@see Fig. 7~b!#. This can
be understood from Fig. 3~b!; we have 6v̄116v̄313v̄9

5( i 51
N v i50, indicating that only two average frequenci

are linearly independent. For very smallK, we can find high-
dimensional quasiperiodicity@see, for example, Fig. 8~e!#.
Between these two quasiperiodic regimes, chaos prev
@see Figs. 8~c! and 8~d!, and the positive Lyapunov expone
regime in Fig. 6#, and in this regime phase synchronizati
of chaotic oscillators and clusters takes place.

The entire variation from high-dimensional quasiperiod
ity ~for very weak couplingK) to periodic motion (K
,Kc , uK2Kcu!1) through various orders of chaos sy
chronization can be vividly seen in Figs. 3, 6, and 8. Start
from the high-dimensional quasiperiodicity forK!1, on in-
creasingK various neighboring oscillators with close fre
quencies start to form clusters via phase synchronization,
chaos is induced near the first synchronization. Then in e
cluster different oscillators perform different chaotic m
tions, while possessing an identical winding number. T
winding numbers for different clusters are different. On fu
ther increasingK, adjacent chaotic clusters can be synch
nized to form larger clusters, until two large clusters a
formed, when the motion becomes periodic. A cascade
transitions from high-dimensional to low-dimensional qua
periodic tori is observed, which are regular quasiperio
ce

al
e

e

-

ils

-

g

nd
ch

e
-
-
e
of
-
c

windows embedded in chaotic motion. This relates to
process of phase synchronization among various oscilla
and clustering. This tree picture of transitions is expected
be common in general for a large number of coupled n
identical oscillators, that are periodic in the uncoupled ca

V. CONCLUDING REMARKS

In this paper, we explored the phase synchronization
namics in locally coupled limit cycles with distributed nat
ral frequencies. We found a synchronization tree from f
oscillations to local clustering and to global phase lockin
and a change from high-dimensional quasiperiodic tori
weak coupling strength to low-dimensional quasiperiodic
and periodic motions~near the onset of phase locking!
through various orders of chaotic phase synchronizat
Chaos and periodic windows occur during the transitio
from high- to low-dimensional quasiperiodic tori. In a sy
chronized cluster, the motions of oscillators are different,
they have an identical winding number. Chaos occurs
quently near the onset of phase synchronization. We a
found several different types of phase synchronizations.
complicated bifurcation tree is the consequence of comp
tion between the quenched disorder of natural frequen
and the collective tendency induced by the coupling, and
competition between the interaction distance and the nat
frequency differences. Near the onset of various phase
chronization transitions and of global phase locking, we fi
a simultaneous stick-slip behavior of the phases of all os
lators. The instantaneous phase velocities of various osc
tors exhibit a firinglike feature. In these regimes, the osci
tors also exhibit collectively quantized phase slips. By us
a heteroclinic orbit argument, we gave these critical beh
iors intuitive interpretations, and the quantized phase s
are well predicted.

Although the discussion in this paper is based on the p
ticular model of Eqs.~1!, the rich synchronization behavior
found are expected to be observable in general coupled
tems that have distributed frequencies and are periodic i
vidually in the absence of coupling.
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