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Collective phase slips and phase synchronizations in coupled oscillator systems
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Phase synchronization dynamics in coupled limit cycles with distributed natural frequencies are explored. A
synchronization tree from free oscillations to local clustering and global phase locking is found. A
desynchronization-induced transition to chaos is shown. Near the onset of various phase synchronization
points, a simultaneous quantized stick-slip feature of the phases of oscillators is observed on the desynchro-
nization side and heuristically interpreted in terms of a heteroclinic path instability.
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[. INTRODUCTION strength, instantaneous phase, and velocity, respectively.
0; . n(1) = 6;(1). Without losing generality we scale; such
The dynamics of systems consisting of a large number ofhat
mutually interacting units is an intriguing problem in many
fields, ranging from physics to chemistry, ecology, econom- N
ics, and biology. A significant phenomenon among these be- > ;=0. 2
haviors is that a large population of interacting oscillators =t

can spontaneously synchronize themselves to a common fre- . . -
guency, even if some quenched distribution of natural fre—eNhen one increases the couplikigsystem(1) exhibits com-

qguencies across the population exigts,2]. This self- {3I|cateiihsygphrodn|zed_d_yn?_mw? duetrt]o the co?p;tmog be-
synchronization behavior can be found in laser arrd8js ween the disorder originaling from the guenched random-

Josephson-junction arra], magnetic resonance processesness of the natural frquencies. of various oscillators and the
(the coherent motion of magnetized domains in stronglyo.rder induced by the interaction among e'e”?e_”ts- For a
coupled magnetic systeiis], charged wave instabilities in given Nand{w;,i=12,... N}' there exists a critical cou-
plasma[6], and a large variety of chemical and biological pling K¢ whenK>K9 all oscillators can be phase locked to
systemg7—16]. A promising strategy in studying these sys- €ach other, one hg®;=0} fori=1,... N, and eacty, is
tems is to adopt phase mod¢ls2]. A number of investiga- locked to a fixed value. When the coupling strenéthis
tions have been made in the past few years on coupled limlewer thanK, the oscillators cannot attain global phase
cycle systems, where each system has periodic motion in tHecking, and therg,;(t) is nonzero and time dependent. It is
absence of coupling. Recently, the exploration has been eXeund that if we define the average frequency of itheos-
tended to coupled chaotic systems. Under some circunillator as

stances one can define an appropriate phase of the individual

chaotic oscillatof{17], and the phase synchronization phe- — 1.
nomenon has been fouhd8—24. w;= lim $J g,(t)dt, ©)

T

Although the mutual entrainment of coupled systems has 0

been extensively explored, many intrinsic dynamical mecha- . ) o )
nisms are still unknown. For example, it is not clear how theVe may still observe a certain synchronization between dif-
various oscillators are led to complete synchronization via derent oscillators in théime-averagedsense, i.e.w; = o,
sequence of transitions on increasing the coupling strength. (i #j) for the caseK<K,, when the strict phase locking
is important to elucidate this issue from a microscopic point'ei(t):o is broken. In this regime, the system may exhibit
of view. Recently, we studied this problem and found richcomplicated phase synchronization behaviors. It is an in-
behaviors of synchronized bifurcations in coupled limit triguing topic to investigate how these nonidentical limit
cycles[21]. In this paper we go further in exploring and cycles are led to complete synchronization on increasing the
understanding the essential features of the system. We comutual couplingk from K=0.
sider the following set oN nonlinearly coupled phase oscil-  The paper is arranged as follows. Section Il is devoted to
lators with random natural frequencies taken from a nor-  a general description of the synchronization process and the
mal Gaussian distributiog(w) and with nearest coupling critical behavior near the onset of global phase locking. In
[1,2]: Sec. Ill, we reveal a cascade of transitions for phase synchro-
K nization between oscillators or clusters of oscillators. The
S L Drei o L g phase dynamics in the vicinities of these transitions are in-
b=t 3 [SIN(6i1= 6,)+SIN(6; -1~ 6)] @) vestigated. Bifurcation cascades from high-dimensional qua-
. siperiodicity to chaos to low-dimensional quasiperiodicity
Here,i=1,2,... N, whereK, 6;, and 6, are the coupling and periodicity are explored in Sec. IV, where

1063-651X/2000/6@)/402(7)/$15.00 PRE 62 402 ©2000 The American Physical Society



PRE 62 COLLECTIVE PHASE SLIPS AND PHAS . .. 403

i Ol o @ ®
I I Revusmensavnraoesa I :
g 0 g VI i \I 100 x
20 40 60 80 1 10 N=4 ¥ 1,2,4,5
10{Q—~—"77,4, ——N=5
P ” -5 -4 -3 2 -1 0 0.01 3 2 1
s 0 107 107 107 10° 107 10 10° 10 10
-10 K-K K-K
20 {c)
0 20 40 60 80 100 O 250 500 750 1000
! ! o 01
FIG. 1. (a),(b): The time evolutions of;(t) plotted forN=5
and two different coupling strength§=0.1 and 5.07. Near the e
onset of the instability of the phase-locking stétg simultaneous 0.01+— ~ -
firings of all oscillators are clearly showfc),(d) The evolution of 10 IOK K 10
6;(t) plotted near the critical poitt =K., whereK=5.07, N=5 ¢
in (c) an_d K=6.212, N'= 15 in_ (d). Quantization of simultaneous FIG. 2. (a) The log-log plot of the time- between two phase slip
phase slips for all oscillators is shown. firings and the coupling,—K for N=3, 4, and 5, and a scaling

S B exponent of—1/2. (b) The absolute winding number for oscillators
desynchronization-induced transitions to chaos are emphgtotted againsK.—K for N=5; the absolute winding number of

sized. We summarize our results in Sec. V. i=3 is four times larger than that df=1,2,4,5 because of the
relation Eq.(12). (c) The quantityQ) varying againstK.—K for

II. SIMULTANEOUS PHASE SLIPS NEAR THE ONSET N=5. For both(b) and(c), the scaling exponent is 1/2, indicating a
OF SYNCHRONIZATION typical saddle-node bifurcation from the phase-locking state.

For N coupled oscillators, there exists a critical coupling =1,3. Moreover, a plot of duration againstk .— K shows a
strengthK.. If K is larger thanK., all oscillators in the clear scaling relation
system are synchronized. It is interesting to study the dy-
namical behavior near the onset of global synchronization 7o (K= K) ™12, (4)

for K slightly smaller tharK, from a microscopic point of
view. gntly ¢ pic P as shown in Fig. @) for N=3, 4, and 5.

It is natural to study the temporal behaviors of the rotating 1 H€Se featuressynchronized firings of motion and quan-
f ied 5 (1)) of the limit cveles. In Fi 4 1b tized slips of phase in each firingan be understood by an
requencieq 6;(t)} o (_e Imit cycles. In Fgs. ®) an- 1b). intuitive interpretation. Suppose that various oscillators can
we present the evolutions d;fi'(t) for N=5 and different be locked to a set of phase%(K) for K>K,. Since the
coupling strengths. FoK=0, 6;(t) must be equal to the forces on the right-hand side of Eq4) have 27 periodicity
constant natural frequenay; . For weak interactions among jith respect to all the phase anglés i=1,2,... N, it is
oscillators,;(t) varies in an oscillatory way around its natu- clear that all sets satisfying the relations
ral frequency{Fig. 1(a)]. As K increases, the oscillation am- . o o
plitude of 6,(t) becomes large, and at the same time the A0+ 1(K,m)= 6, 1(K,m)—6;(K,m)
average frequencies; shift closer to each other from their
individual natural frequencies;. In Fig. 1(b), we plot the

evolution of #;(t) near the onset of synchronization, where :AE(K)+2wmi (5)

we find simultaneous on-off oscillations, i.e., all oscillators

stay in the phase-locking conditigoff state for a long time, must also be phase-locking solutions of Ef). Wherem

and then simultaneous burdfirings) of all oscillators(on ~ =(my, ... ,m;, ... ,my) andm; is any integer. The phase-
state break the locking state. After a short pulselike firing, locking solutions may lose their stability via a saddle-node
all oscillators return simultaneously to the phase-lockingbifurcation whenK is decreased to less thdf,.. At the
state, and this process is repeated periodically.KAgets critical pointK=K,, there exists a heteroclinic path linking
closer toK., the durationr between two successive firings some of these phase-locking solutions, which has the lowest
from the phase-locking state becomes longer, untiKat potential, and is attractive. For the particular chke2, the
=K., 7—. In Figs. Xc) and Xd), the evolution of the existence of such a heteroclinic path can be rigorously
phases of individual oscillators near the onset of global phasproved [22]. Near the onset of desynchronization, i.K.,
locking is plotted forN=5 and 15, and we find very char- <K, and|K—K.|<1, the saddle-node instability leads to
acteristic quantized phase slips, i.e., the phase evolution®otion along this heteroclinic path. That is, the system takes
have a staircaselike shape. Oscillators stay at certain phasech a periodic path, which stays in the vicinity of one of the
values for a long time and then simultaneously jump to newabove stationary solutions for a long tinteoff” state ), es-
steps. The amplitudes of jumps for different elements may beapes from this solution, and then quickly approaches the
different, e.g., in Fig. ) for N=5, A9=2x/5 for i vicinity of the next stationary solution along the heteroclinic
=1,2,4,5 andA ¥=—8x/5 fori=3, and in Fig. 1d) for N path K=K, (“on” state, firing). Due to the interaction of
=15, A9=4=/15 for i=5,7,9 andAf=—16mx/15 for i units, all oscillators experience simultaneous phase slips, or,

=0+ 1(K)— 6,(K)+2mm,



404 ZHIGANG ZHENG, BAMBI HU, AND GANG HU PRE 62

say, synchronized firings. This mechanism leads to the si-
multaneous periodic pulses of Figlbl. For the saddle-node
bifurcation, we have a universal for[23]:

x=(K¢—K)+x2. (6)

The time 7 for x to move fromx=0 to x— o reads

()

fx dx T
TX = .
0 (Kc—K)+x? 2VK.—K

This explains the scaling relatiof). For this saddle-node
bifurcation, we expect thai; and Q=3 ,|w;| obey the

-4
ha -:;% N=15 I
typical scaling behaviortw;|o= (K,—K)¥2, Qo (K,—K)Y2 1.0 A

In Figs. 2b) and Zc), we give numerical results for the A 0.5
scaling in the critical regime foN=5, which are in good <
agreement with the above prediction. v 007
Based on the above discussions, it is interesting to com- 0.5 A \(12-15,1-3)
pute the phase slips of various oscillators during each phase \(12_15,1,2)
slip pulse. LetA §; denote the phase shift @ during each -1.01
firing. From Eqgs.(2) and(3), we have 15 (b)
0 2 4 6 8

N

> A6=0, (8) K

=1

FIG. 3. Transition trees of synchronization for averaged winding

i.e., due to the absence of motion of the center of mass, thieimbers of various oscillators vs the coupliig(a) N=5; (b)) N
total shifts of various oscillators are zero. Thus, if there are=15- Different orders of clustering can be observed with the in-
limit cycles rotating in the clockwise direction, there must crease oK. Note the existence of three kinds of transitions labeled
also exist elements rotating counterclockwise for balance’" B'A?(”f C. Ihﬁh?“tvei are baS(fed b, numen((:jal75|mulat|0an0r
We further argue that any two adjacent fixed points along &1ePAK=0.01. This is the same for Figs. 6 and 7.
heteroclinic path aK=K, takem;=0 or =1 in Egs.(5),

ie., [mé;(t)—no;(t)|<const (11

AG . —AB=0 or +2 9 —can still be observed, whema,n are two integers repre-
L ' T © senting than:n phase locking. Obviously this phase locking

fori=1,2,... N—1. Combining both the conditiof8) and is valid in an average sense. A typical case is 1:1 phase
the hierarchy(9), one finds that\ §; takes only the following locking, which is equivalent to the conditian, = w; . In or-

guantized values: der to clearly show the hierarchy of phase locking among

oscillators and the competition between the natural fre-

27 4w 2(N-1)7 guency distribution and the coupling intensity, we plot the
AG=0*r—,=—, ... ,——— 2. 109 — L ;

N N N w;-K curves to show the characteristics of various synchro-

nizations. In Figs. @& and 3b), we plotw; defined in Eq(3)
In realistic systems, the value for eadl¥; depends on the againstk for N=5 and 15, respectively, by varyirtg from
choice of the distribution ofw;}. Returning to Figs. (£) and  K=0 to K>K,. In both figures, we find transition trees of
1(d), we find that the labeled phase shifts are completelyphase synchronizations.
consistent with Eq(10). In fact, the shifts can be exactly =~ A systematic investigation of Figs. 3 shows that three
worked out after we clarify the behavior of phase synchrokinds of transitions can be observed in the trees. First, if two

nization in the next section. lattice-adjacent oscillator®.g., 1 and 2 are lattice adjacent,
while 1 and 3 are not iN=4) or adjacent clusters of oscil-

I1l. TRANSITION-TREE CASCADE lators (here aclusteris defined as a group of oscillators with

OF PHASE SYNCHRONIZATIONS an identical average frequendyave close frequencies, they

_ _ _ ) o can easily be synchronized by increasing the coughngn

From the microscopic point of view, it is significant to thjs case, one always finds two branches merging to a single
study how the competition between disorder and interactiongne(indicated by A. This kind of transition can be observed
leads to global entrainment of various oscillators. As we refrequently along the bifurcation tree. Second, if two nonad-
duce K to values considerably smaller that,, no more  jacent oscillators have close frequencies while the oscillators
phase locking exists, and no apparent synchronization can figtween them have considerably different frequencies, the
observed directly forg;(t). However, some other implicit nonadjacent oscillators can also become phase synchronized
synchronization—phase synchronization, which demando each other, i.e., nonlocal clusters can be formed, and these
[24] nonlocal clusters can quickly bring the oscillators between
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FIG. 4. (@ An enlarged plot of the nonlocal phase synchroniza-  F|G. 5. (a): Synchronized firing oféi(t)—Qs at K=4.534 for
tion for N=15. (b) The time evolution of the phase difference N=15, where a cluste@—11) desynchronizes t®4—8 and(9-11).
6g(t) — 05(t) before and after nonlocal phase synchronization.  Here ),=0.182 is the winding number at the transition poit)

. The evolution of the corresponding phase shiftgg(ft) — Q.t.
them to the synchronized state and form a larger synchro-

nized cluster. This kind of transition occurs frequently for
systems with a large number of nonidentical elements, which

are labeled B in Fig. ®). In Fig. 4@, we give an enlarged By solving the above equations, it is easy to obtaifis
plot of an example of type B bifurcation for the cabe - _gx/5 andA 9, =2x/5,i=1, 2, 4, and 5. FON= 15, we
=15. Although oscillators 5 and 8 are nonadjacent, they benaye two clusters nea., i.e., the clockwise clusted—11)

come phase synchronized at abéUt0.99. This nonlocal gnd the anticlockwise clustéi—3,12—15. Thus from Eq.
synchronization quickly brings the adjacent oscillator to a(g) we get

synchronized state, e.g., &=1.11, this nonlocal cluster

synchronizes with the sixth and seventh oscillators. In Fig.

4(b), we show the time evolution of the phase difference 4211A9i:8A 9i:_173§2715A912_7A 0p, (13

0g(t) — 65(t) slightly before and after phase synchronization. '

Before the nonlocal locking occurs, one observes irregulajvhere i=4-11 andj=1-3,12—15. SimilarlyA6;—A#6,
phase slips of the phase difference. When phase synchroni- —27. These equations thus lead #08,=14#/15 for i
zation takes place, the phase difference becomes localized,4—11 andA 6;=—16m/15 for j=1-3 and 12-15. This
i.e., it oscillates around some value, and no phase slips bemnalysis indicates that the phase shifts of oscillators relate
tween these two oscillators are found. This proves the exisclosely to the final clusters. For a general case, assuming that
tence of nonlocal phase synchronization. An oscillator that ishere areN, (N—N;) clockwise (anticlockwise oscillators,

synchronized to a cluster for a certdlrmay become desyn- g similar treatment to the above argument leads to
chronized from the original cluster on increasiig It is

clear that this kind of transition is an inverse process of syn- 27m(N—Ny)
chronization. This desynchronization always happens at the Aai:T (14
edge oscillator of a cluster, due to the competition between
two neighboring clusterflabeled C, e.g., see the second andfor the clockwise cluster and
third oscillators of Fig. &)]. Transitions of type A are nor-
mal, but B and C are different types of transitions.

Based on the bifurcation tree presented in Fig. 3, we are
able to exactly explain the phase shifts in Fige) nd 1d).
For the case ol =5, whenK <K and|K—K.|<1, one has for the anticlockwise cluster.

AHZ_A93:27T

2’7TN1

two clusters 3 and 1, 2, 4, 5. Thus, from the relatiép we An interesting fact is that the stick-slip feature and the
have related quantized phase shifts in firing pulses can be ob-
served at other high-order transitions in the cascade tree of
_ _ _ Fig. 3. For instance, in Fig.(8), we plot the phase dynamics
1;2,5A 0i=—A65=4A6;, (12 for K=4.534 and\ =15, where one large synchronized clus-

ter (4—11) desynchronizes to two cluste{4—8) and(9-11).
wherei=1,2,4,5. Because oscillators 2 and 3 belong to dif-A stick-slip feature with simultaneous firing is found, and the
ferent clusters, and,>0, w3<0, one has from the condi- phase shifts during each firing are shown in Fig)4which
tion (9) can be analytically computed by using the technique of Egs.
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FIG. 6. The maximum Lyapunov exponexy,,, plotted against K K
the couplingK for N=15. In a large regime)\ >0, indicatin .
chaos ping 9 9 max 9 FIG. 7. Enlarged plot of the transition tree of average frequen-

cies and the corresponding behaviorXf,, for N=15. Positive

. L. . .. Amax @re observed when clustering or declustering occurs.
(12)—(15). Similar behavior is confirmed at other transitions, = ™ 9 9

like K=5.02, 2.6, 1.06, and 0.66 in Fig(l8. _ - o
and we then find positive 4, after desynchronization. A

similar phenomenon can be observed #r4.49-4.54,
when the edge oscillator 3 desynchronizes from ({Be8)
cluster. Therefore, we call this transition desynchronization-
In previous sections, we concentrated on the average béduced chaos. This transition is reasonable because in both
havior of the coupled oscillators. From an average point ofigs. 1@ and 7c) the third irreducible frequency appears
view, the route from desynchronization to global phase lockfrom the two-frequency quasiperiodicity due to the desyn-
ing is a transition tree of different orders of synchronizations chronization effect, which induces the transition from quasi-
as shown in Figs. 3. As some average winding numbers beperiodicity to chaoszero Lyapunov exponents to positive
come locked, i.e.0;= w;, the dimensionality of the coupled oneg in Figs. 1b) and 1d), respectively. .
system decreases. However, due to the couplings among os- In Figs. 8a) to 8(e), we plot the maps ob,;(n) to #;(n
cillators, the actual dynamics without averaging can be very

IV. BIFURCATION FROM QUASIPERIODICITY
TO CHAOS AND PERIODICITY

complicated, i.e., the motion in the synchronization trees of 0.0/ @
Fig. 3 may be very different. It can be periodic, quasiperiodic :

and even chaotic. the dynamic features along these synchro- = 02

nization trees. In Fig. 6, we consider the caséNef 15 and %

plot the largest Lyapunov exponet,,, of the system = 04

against the coupling strengtk. We find that, in a large 06 : K=64
interval of K, the maximum Lyapunov exponent is positive, 06 04 02 00
indicating chaos. Therefore, in this region phase synchroni-

zations of chaotic oscillators are identified. Recently, the 04 (b) 089

phase synchronization of coupled chaotic systems has at-
tracted great attention, and clustering, synchronization, and 06 -1.2
other collective behaviors have been explored. An essential

difference between the previous chaos synchronization and 08|, 30 1.6 F s
ours is that in the latter case individual oscillators are peri- _;8' o6 od 20 —
odic in the absence of coupling, and chaos is induced by ‘ ’ ‘ ;2‘0 16 -12 08
nonlinear interactions of periodic oscillators, while in the ) -1.03 ©

indivi i intrinsi i -1.0
former case the individual units are intrinsically chaotic

without coupling. 12
It is interesting to see how chaos is generated in these 14

systems. In Figs. 7, we give the correspondence between the :

bifurcation tree of phase synchronizations and the maximum -1.6 k=09 -1

Lyapunov exponent at some characteristic intervals. It is 16 -14 -12 .10 105 104 -1.03
clearly shown that chaos occurs before a new phase synchro- o,(n) 8,(n)

nization is attained or a desynchronization happens. For ex-

ample, forK=2.415-2.4, a large cluster desynchronizes t0 g, g, Mmaps ofg,(n) to 8,(n+1) for K=6.0, 3.0, 1.5, 0.9,
smaller ones, the motion of the system becomes irregulagng 0.01 from(a) to (e), respectively. Fork=6.0<K,=6.22,
and one then observes a positive Lyapunov exponent. FQferiod-8 motion is identified ifia). In (b) and(d), chaotic motions
K=2.5-2.61, the cluster of sit¢4,2,12—-1%, of which the  take place(c) and(e) correspond to quasiperiodic tori, the dimen-
motion is quasiperiodic with the largest Lyapunov exponenision in (e) being much higher than ifc) [in (c), the torus is two
being zero, bifurcates to two clust€513,14 and(1,12,15, dimensional.
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windows embedded in chaotic motion. This relates to the
. . . process of phase synchronization among various oscillators
0,(1) crosses th_e anglenzr W'th. n bemg an mte_ger. When and clustering. This tree picture of transitions is expected to
K=K, we oby|ously .have a fixed point solution, and the be common in general for a large number of coupled non-
map is fixed at91(n) = 01(n+1)=0. ForK slightly smaller  identical oscillators, that are periodic in the uncoupled case.
thanK., we have a periodic solution represented by a finite

number of dots in Fig. &). In 8(a), there are a total of eight V. CONCLUDING REMARKS

dots, indicating a period-8 motion. From Figbg we iden-

tify this as a two-cluster state, where the clusters(drell) L . . o
| C . : namics in locally coupled limit cycles with distributed natu-
and(1-3,12—13 From Fig. 1d), this period-8 behavior can ral frequencies. We found a synchronization tree from free

easily be understood. The period of the total system is 15 ,gijjations to local clustering and to global phase locking,
wherer is the time between two adjacent firings. The changeéyng a change from high-dimensional quasiperiodic tori for
of 6, in 157 is 16m, because in eachthe slip amplitude of weak coupling strength to low-dimensional quasiperiodicity
61 is —16m/15, as seen from Fig.(d). Therefore one gets and periodic motions(near the onset of phase locking
period-8 motion in Fig. &). If one chooses the Poincare through various orders of chaotic phase synchronization.
map for the other clustgd—11), it can easily be proved that Chaos and periodic windows occur during the transitions
the motion should be of period-7. Moreover, the periodicityfrom high- to low-dimensional quasiperiodic tori. In a syn-
of the motion of an oscillator depends on the cluster it be-chronized cluster, the motions of oscillators are different, but
longs to. Generally, if there amd; oscillators in one cluster they have an identical winding number. Chaos occurs fre-
(denoted byC1) andN—N; in another C2), the motion of quently near the onset of phase synchronization. We also
the oscillator inC1 is period N—Nj;), and the motion of found several different types of phase synchronizations. The
oscillators inC2 is periodN;. A two-frequency torus can be complicated bifurcation tree is the consequence of competi-
identified in the three-cluster reginisee Fig. T)]. This can  tion between the quenched disorder of natural frequencies
be understood from Fig.(B); we have gﬁ 6;3+ 3;9 and the_ (_:ollective tendenc_:y induqed by the coupling, and the
=21N—1wi=0, indicating that only two average frequencies competition .between the interaction d|stance_and the natural
are linearly independent. For very smidllwe can find high- requency differences. Near the onset of various phase syn-
dimensional quasiperiodicitjsee, for example, Fig.(8)]. chronization transitions and of global phase locking, we find

Between these two quasiperiodic regimes, chaos prevaiﬁ smul_f_inepus stick-slip berk:awor olf th.e pha:cses .Of all Osﬁ;l'
[see Figs. &) and 8d), and the positive Lyapunov exponent ators. The instantaneous phase velocities of various oscilla-

regime in Fig. 8 and in this regime phase synchronizationtors exhibit a_fi_ringlike f_eature. In t_hese regimes_, the oscil_la-
of chaotic oscillators and clusters takes place tors also exhibit collectively quantized phase slips. By using

The entire variation from high-dimensional quasiperiodic-f’i heFero.c_Iinic. orbit argument, we gave these critical behe}V-
ity (for very weak couplingk) to periodic motion K iors intuitive interpretations, and the quantized phase slips

<K,, |[K—K¢<1) through various orders of chaos syn- &€ well predicted.

chronization can be vividly seen in Figs. 3, 6, and 8. Startinq_ Al‘lthOUth :hi (éisculssit%n in_ trr]'is par;er is_ b?sedborrl] th_e par-
from the high-dimensional quasiperiodicity fr<1, on in- icular model of Eqs(1), the rich synchronization behaviors

creasingK various neighboring oscillators with close fre- found are expected to be observable in general coupled sys-

guencies start to form clusters via phase synchronization, ant(?mS that have distributed frequencies and are periodic indi-

chaos is induced near the first synchronization. Then in eacwdua”y in the absence of coupling.
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